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Abstract

In this essay, we first introduce the ER network. After that, we use
simulation and numerical calculation methods to work out 𝑃𝑆. Besides
that, we plot giant component for Poisson and power law distribution.
Finally, we explore the phase transition in ER network briefly.
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1 Part I: ER Network

1.1 A Brief History from Seven Bridges of Königsberg
to ER Network

The research method of using graphs to represent problems can be traced
back to the study of the Seven Bridges of Königsberg by the great mathemati-
cian Euler in 1736. Königsberg is a town in East Prussia that is bisected by a
river that cuts through the city, with seven bridges connecting the two banks
of the river. The question that people are interested in is, can all bridges be
traversed under the premise that all bridges are traversed only once? Euler
gave sufficient and necessary conditions to be able to traverse and made a
negative answer to this question. Euler’s research on this problem created an
essential branch of mathematics - graph theory.

Figure 1: An illustration of Seven Bridges of Königsberg

After solving the Seven Bridges problem, graph theory did not gain rapid
development immediately. Graph theory and random networks have come a
long way since Paul Erdős and Alfréd Rényi published their famous paper[3]
in the 1960s. For a long time after that, the random network model proposed
by Erdős and Rényi in [3] was an essential tool for studying real networks. At
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the same time, people have also designed social experiments to reveal some
characteristics of social networks, among which Milgram’s social survey[6] and
game of Bacon[1] are widely known.

1.2 Basic Structure of ER Network

For ER network, also known as random network, there are two main pop-
ular definitions, which can be denoted as 𝐺(𝑛, 𝑙) model and 𝐺(𝑛, 𝑝) model,
respectively.

• 𝐺(𝑛, 𝑙) model consists of 𝑛 nodes connected by 𝑙 randomly place edges[3];

• 𝐺(𝑛, 𝑝) model consists of 𝑛 nodes and edges linking each pair of nodes
with probability 𝑝[4].

Figure 2: An example of ER network with 𝑛 = 50 and 𝑝 = 0.6

This essay will use the 𝐺(𝑛, 𝑝) model. This is not only because the model
is easier to calculate and display some properties of random networks but also
because it is rare for the number of links to remain constant for real networks.
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ER network is undirected, and the average degree ⟨𝑘⟩ is

⟨𝑘⟩ = 1
𝑛

𝑛
∑
𝑖=1

𝑘𝑖 = 𝑝(𝑛 − 1)

Namely,⟨𝑘⟩ ≈ 𝑛𝑝 as 𝑛 → ∞. Therefore, we can use appropriate 𝑛 and 𝑝
to generate a random network with desired ⟨𝑘⟩.

1.3 Comparison of Two Different Calculation Methods
of 𝑃𝑆

To make it more precise, we decide to generate the ER network from
𝐺(100, 0.5

99 ).

1.3.1 𝑃𝑠 from Simulation

Generate the ER network 1000 times and work out the average 𝑃𝑠 as the
simulation result, which is shown in section 1.3.3.

The following graph is one of the generated networks during the simulation.
To make it easier to distinguish, connected clusters with different sizes have
different colors.

Figure 3: An example of the generated ER network during simulation
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1.3.2 𝑃𝑠 from Numerical Calculation

According to the slides, 𝑃𝑠 can be calculated by the following formula

𝑃𝑠 = 1
2𝜋𝑖

∮ 𝐻0(𝑧)
𝑧𝑠+1 d𝑧

and 𝐻0(𝑥) will be introduced pretty soon.
Set 𝑧 = 𝑒𝑖𝜃 we have

𝑃𝑠 = 1
2𝜋

∫
2𝜋

0

𝐻0 (e𝑖𝜃)
e𝑖𝜃𝑠 d𝜃

We can divide the interval into 𝑁 equal sub-intervals to apply the numerical
method. Then 𝑃𝑠 can be approximated by

𝑃𝑠 ≈ 1
2𝜋

𝑁−1
∑
𝑘=0

𝐻0 (e𝑖 2𝑘𝜋
𝑁 )

e𝑖 2𝑘𝜋𝑠
𝑁

× 2𝜋
𝑁

We first introduce some crucial formulas. Let 𝐺0 be the generative function
of a network. In our example, we have

𝐺0(𝑥) = ∑
𝑘

𝑝𝑘𝑥𝑘 = (1 − 𝑝 + 𝑝𝑥)𝑁−1.

Also, according to the slides, we have

𝐺1(𝑥) = 𝐺′
0(𝑥)

𝐺′
0(1)

= (1 − 𝑝 + 𝑝𝑥)𝑁−2.

Meanwhile,
⎧{
⎨{⎩

𝐻1(𝑥) = 𝑥𝐺1(𝐻1(𝑥))

𝐻0(𝑥) = 𝑥𝐺0(𝐻1(𝑥))

Use the above Now we can calculate 𝐻0(•) and get simulated 𝑃𝑠 eventually.
The result is shown in section 1.3.3.
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1.3.3 The Result and Comparison

Size 𝑠 𝑃𝑠 from simulation 𝑃𝑠 from numerical calculation
0 0.6020 0.6088
1 0.1921 0.1853
2 0.0882 0.0838
3 0.0460 0.0448
4 0.0235 0.0262
5 0.0171 0.0163
6 0.0102 0.0106
7 0.0076 0.0071
8 0.0045 0.0048
9 0.0035 0.0034
10 0.0028 0.0024
11 0.0006 0.0017
12 0.0013 0.0012
13 0.0000 0.0009
14 0.0000 0.0007
15 0.0000 0.0005

Table 1: The result and comparison table of two calculation methods

It can be drawn from the table that

• The results from two different methods are consistent;

• The results are closer When size 𝑠 is small;

• When 𝑠 is big, the numerical calculation method will give a non-zero
result while the simulation will give 0.

2 Part II: Giant Component

From the definition, we have

𝑆(𝑇 ) = 1 − 𝐻0(1, 𝑇 )
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To calculate 𝐻0(1, 𝑇 ) we need the following formula from slides

⎧{{
⎨{{⎩

𝐺0(𝑥; 𝑇 ) = 𝐺0(1 + (𝑥 − 1)𝑇 )

𝐺1(𝑥; 𝑇 ) = 𝑥𝐺1(1 + (𝑥 − 1)𝑇 )

𝐻0(𝑥; 𝑇 ) = 𝑥𝐺0(𝐻1(𝑥; 𝑇 ); 𝑇 )

Set 𝑥 = 1 and do iteration, we can get 𝐻0(1, 𝑇 ) and therefore 𝑆(𝑇 ) even-
tually.

2.1 Giant Component for Poisson Distribution

The degree distribution of Poisson is

𝑝𝑘 = 𝜆𝑘

𝑘!
e−𝜆

Combined with the formula mentioned at the beginning of section 2. we
can plot the giant component size 𝑆 vs. 𝑇. Also, from the slides we know
for Poisson distribution 𝑇𝑐 = 1

⟨𝑘⟩ where ⟨𝑘⟩ = 𝐺′

0(1) represents the average
degree. Meanwhile, the plot shows consistency with our theory.

Figure 4: 𝑆 vs 𝑇 with k=1
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Figure 5: 𝑆 vs 𝑇 with k=5

2.2 Power Law Degree Distribution

According to the given restriction, we can write the degree distribution 𝑝𝑘

𝑝𝑘 =

√
𝑁

∑
𝑘=2

𝑘−2.5

Similarly, following the step in section 2.1, we can get the following graphs.
Also from the slides we know 𝑇𝑐 = ⟨𝑘⟩

⟨𝑘(𝑘−1)⟩ .
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Figure 6: 𝑆 vs 𝑇 with N = 100

In this case, we have ⟨𝑘⟩ = 3.09 and 𝑇𝑐 = 0.329.

Figure 7: 𝑆 vs 𝑇 with N = 500

In this case, we have ⟨𝑘⟩ = 3.55 and 𝑇𝑐 = 0.204.
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3 Part III: Extra Part about ER Network

If we define giant component as the connected clusters with most nodes,
no matter whether the network is sparse or not, a problem emerges. When
generating figure 2, we find that the size of a giant component does not increase
linearly with increasing 𝑝.

We consulted some textbook[2] and papers[5] and finally found the corre-
sponding explanation: there exists a phase transition in ER network when 𝑝
is increasing. More specifically[5],

• Let𝑝 = 1−𝜖
𝑛 , where 𝜖 > 0 is a small enough constant and let 𝐺 ∼ 𝐺(𝑛, 𝑝).

Then w.h.p. all connected components of G are of size at most 7
𝜖2 𝑙𝑛𝑛.

• Let 𝑝 = 1+𝜖
𝑛 𝑛. Then w.h.p. 𝐺 has a connected component with at least

𝜖𝑛
2 nodes.

where w.h.p. denote with high probability[5].
Meanwhile, we generate an ER network with 𝑛 = 150 and increasing 𝑝 to

illustrate the phase transition.

Figure 8: Phase transition in ER network with 𝑛 = 150
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